NCERT Class 11 Mathematics Chapter 3 Trigonometric Functions

NCERT Class 11 Mathematics Chapter 3 Trigonometric Functions Solutions, NCERT Solutions For Class 11 Maths, NCERT Class 11 Mathematics Chapter 3 Trigonometric Functions Notes to each chapter is provided in the list so that you can easily browse throughout different chapter NCERT Class 11 Mathematics Chapter 3 Trigonometric Functions Notes and select needs one.

NCERT Class 11 Mathematics Chapter 3 Trigonometric Functions

Join Telegram channel

Also, you can read the CBSE book online in these sections Solutions by Expert Teachers as per (CBSE) Book guidelines. NCERT Class 11 Mathematics Chapter 3 Trigonometric Functions Textual Question Answer. These solutions are part of NCERT All Subject Solutions. Here we have given NCERT Class 11 Mathematics Chapter 3 Trigonometric Functions Solutions for All Subject, You can practice these here.

Trigonometric Functions

Chapter – 3

Exercise 3.1

1. Find the radian measures corresponding to the following degree measures.

(i) 25°

Ans: 25°

We know that 180⁰ = π radian

(ii) -47°30

Ans: -47°30′

-47°30′ = 

WhatsApp Group Join Now
Telegram Group Join Now
Instagram Join Now

(iii) 240°

Ans: 240°

We know that 180° = π radian

(iv) 520°

Ans:

2. Find the degree measures corresponding to the following radian measures

Ans: 11/16

We know that ㅠ radian = 180°

(ii) -4

Ans:

Ans: 5π/3 

We know that ㅠ radian = 180°

Ans: 7π/6

We know that ㅠ radian = 180°

3. A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?

Ans: Number of revolutions made by the wheel in 1 minute = 360 

∴ Number of revolutions made by the wheel in 1 second = 360/60 = 6

In one complete revolution, the wheel turns an angle of 2 ㅠ radian.

Hence, in 6 complete revolutions, it will turn an angle of 6 × 2 ㅠ radian, i.e.,

12 ㅠ radian

Thus, in one second, the wheel turns an angle of 12ㅠ radian.

4. Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm 

Ans: We know that in a circle of radius r unit, if an arc of length / unit subtends an angle θ radian at the centre, then

Thus, the required angle is 12°36″².

5. In a circle of diameter 40 cm, the length of a chord is 20 cm. Find the length of minor are of the chord.

Ans: Diameter of the circle = 40 cm

 ∴ Radius (r) of the circle =

Let AB be a chord (length = 20 cm) of the circle.

In  ∆OAB , ΟΑ = OB = Radius of circle = 20 cm 

Also, AB = 20cm 

Thus,  ∆OAB is an equilateral triangle.

We know that in a circle of radius r unit, if an arc of length / unit subtends an angle θ radian at the centre, then θ = l/r.

Thus, the length of the minor arc of the chord is 20ㅠ /3 cm.

6. If in two circles, arcs of the same length subtend angles 60° and 75° at the centre, find the ratio of their radii.

Ans: Let the radii of the two circles be r₁and r₂. Let an arc of length / subtend an angle of 60° at the centre of the circle of radius r,, while let an arc of length / subtend an angle of 75° at the centre of the circle of radius r₂.

We know that in a circle of radius r unit, if an arc of length / unit subtends an angle θ radian at the centre, then

Thus, the ratio of the radii is 5:4.

7. Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length.

(i) 10 cm.

Ans:

(ii) 15 cm.

Ans:

(iii) 21 cm.

Ans:

Exercise 3.2

1. Find the values of the other five trigonometric functions in Exercises 1 to 5.

Ans:

Since x lies in the 3ʳᵈ quadrant, the value of sin x will be negative.

Ans:

Since x lies in the 2ⁿᵈ quadrant, the value of cos x will be negative

Ans

Since x lies in the 3ʳᵈ quadrant, the value of sec x will be negative.

Ans: 

Since x lies in the 4ᵗʰ quadrant, the value of sin x will be negative.

Ans:

Since x lies in the 2ⁿᵈ quadrant, the value of sec x will be negative.

6. Find the values of the trigonometric functions in Exercises 6 to 10.

Ans: It is known that the values of sin x repeat after an interval of 2ㅠ or 360°.

7. cosec (- 1410⁰).

Ans: It is known that the values of cosec x repeat after an interval of 2ㅠ or 360°. 

∴ cosec (-1410°) = cosec(-1410°+4×360°)

 = cosec (-1410°+1440°)

 = cosec30° = 2.

Ans: It is known that the values of tan x repeat after an interval of ㅠ or 180°.

Ans: It is known that the values of sin x repeat after an interval of 2 ㅠ or 360°.

Ans: It is known that the values of cot x repeat after an interval of ㅠ or 180°.

Exercise 3.3

Prove that:

Ans:

Ans: 

Ans:

Ans: 

5. Find the value of:

(i) sin 75°.

Ans: sin 75°  = sin(45° + 30°)

= sin 45° cos 30° + cos 45° sin 30°

[sin(x + y) = sin x cos y + cos x sin y]

(ii) tan 15°.

Ans: tan 15° = tan (45° – 30°)

Prove the following:

Ans: 

Ans:

Ans:

Ans:

10. sin(n + 1)x  sin(n + 2)x + cos(n + 1)x cos(n + 2) x = cos x.

Ans: 

Ans: 

12. sin² 6x – sin² 4x = sin 2x sin 10x.

Ans:

It is known

∴ L.H.S.= sin² 6x – sin² 4x 

= (sin 6x + sin 4x) (sin 6x – sin4x)

= (2 sin 5x cos x)(2 cos 5x sin x) 

= (2sin 5x  cos 5x)(2sin x cos x)

= sin 10x  sin 2x 

= R.H.S.

13. cos² 2x – cos² 6x = sin 4x  sin 8x.

Ans: It is known

that 

∴ L.H.S.= cos² 2x – cos² 6x 

= (cos 2x + cos 6x) (cos 2x – 6x)

= [2cos 4x  cos 2x] [ – 2 sin 4x(- sin 2x)]

= (2sin 4x  cos 4x)(2sin 2x cos 2x)

= sin 8x sin 4x

= R .H.S.

14. sin2 x + 2 sin 4x + sin 6x = 4cos² x  sin 4x.

Ans: L.H.S.= sin 2x + 2sin 4x + sin 6x

= [sin 2x + sin 6x] + 2sin 4x

= 2 sin 4x cos (- 2x) + 2 sin 4x

= 2 sin 4x  cos 2x + 2 sin 4x

= 2 sin 4x (cos 2x + 1)

=2 sin 4x( 2cos² x –  1+1)

= 2 sin 4x (2cos² x)

= 4cos² x  sin 4x.

15. cot 4x(sin 5x + sin 3x) = cot x  (sin 5x – sin 3x).

Ans: L.H. S = cot 4x(sin 5x + sin 3x)

= 2cos 4x cos x

R.H.S. = cot x (sin 5x – sin 3x)

= 2 cos 4x. cos x

L.H.S. = R.H.S.

Ans: It is known that 

Ans: It is known that 

Ans: It is known that 

Ans: It is known that 

= tan 2x

= R.H.S.

Ans: It is known that 

= – 2×(- sin x) 

= 2 sin x = R.H.S.

Ans:

22. cot x  cot 2x – cot 2x  cot 3x – cot 3x cot x = 1.

Ans: L.H.S.= cot x cot 2x – cot 2x cot 3x – cot 3x cot x

=cot × cot 2x – cot 3x(cot 2x + cot x)

=cot × cot 2x – cot(2x + x) (cot 2x + cot x)

= cot x  cot 2x – (cot 2x cot × – 1) 

= 1 =R.H.S

Ans: It is known that 

∴ L.H.S.= tan 4x = tan 2 (2x)

24. cos 4x = 1 – 8sin² x  cos² x.

Ans: L.H.S.= cos 4x

= cos 2(2x)

= 1 – 2sin²  2x  [cos 2A = 1 – 2sin² A]

= 1 – 2 (2sin x cos x)²  [sin 2A = 2sin A cos A]

= 1 – 8 sin² x cos² x

= R.H.S.

25. cos 6x = 32cos⁶ x – 48cos⁴ x + 18cos² x – 1.

Ans: L.H.S.= cos 6x

= cos 3 (2x)

= 4 cos³ 2x – 3 cos 2x[cos 3A = 4cos³ A – 3 cos A]

=4[(2cos² x – 1)³ – 3(2 cos² x – 1)[cos 2x = 2cos² x – 1]

= 4[(2 cos² x)³ – (1)³ – 3(2cos² x)² + 3(2cos² x)] – 6cos² x + 3 

= 4[8 cos⁶ x – 1 – 12 cos⁴ x + 6 cos² x] – 6 cos²x + 3

= 32 cos⁶ x – 4 – 48 cos⁴ x + 24cos² x – 6 cos² x + 3

= 32 cos⁶ x – 48 cos⁴ x + 18 cos² x – 1

= R .H.S.

Miscellaneous Exercise on Chapter 3

Ans: 

2. (sin 3x + sin x) sin x + (cos 3x – cos x) cos x = 0.

Ans: L.H.S.

= (sin 3x + sin x) sin x +(cos 3x – cos x)cos x 

= sin 3x  sin x + sin² x + cos 3x  cos x – cos²x 

= cos 3x  cos x + sin 3x  sin x – (cos² x – sin² x) 

= cos(3x – x) – cos 2x   [cos(A – B) = cos A  cos B + sin A sin B]

= cos 2x – cos 2x 

= 0

= RH.S.

Ans: L.H.S. = (cos x + cos y)² + (sin x – sin y)²

= cos² x + cos² y + 2cos x cos y + sin² x + sin² y – 2sin x sin y

= (cos² x + sin² x) + (cos² y + sin² y) + 2(cos x  cos y – sin x  sin y) 

= 1 + 1 + 2cos(x + y)   [cos(A + B) = (cos A cos B – sin A sin B)]

= 2 + 2cos(x + y) 

= 2[1 + cos(x + y)] 

Ans: L.H.S.= (cos x – cos y)² + (sin x – sin y)²

= cos² x + cos² y – 2cos x cos y + sin² x + sin² y – 2sin x  sin y 

= (cos² x + sin² x) + (cos² y + sin² y) – 2[cos x cos y + sin x sin y] 

= 1 + 1 – 2[cos(x – y)]   [cos(A – B) = cos A  cos B + sin A  sin B]

= 2[1 – cos(x – y)] 

5. sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x.

Ans: 

Ans: 

Ans: L.H.S.= sin 3x + sin 2x – sin x

Ans:

Ans: 

Ans:

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top