NCERT Class 11 Mathematics Chapter 4 Complex Number and Quadratic Equation

NCERT Class 11 Mathematics Chapter 4 Complex Number and Quadratic Equation Solutions, NCERT Solutions For Class 11 Maths, NCERT Class 11 Mathematics Chapter 4 Complex Number and Quadratic Equation Notes to each chapter is provided in the list so that you can easily browse throughout different chapter NCERT Class 11 Mathematics Chapter 4 Complex Number and Quadratic Equation Notes and select needs one.

NCERT Class 11 Mathematics Chapter 4 Complex Number and Quadratic Equation

Join Telegram channel

Also, you can read the CBSE book online in these sections Solutions by Expert Teachers as per (CBSE) Book guidelines. NCERT Class 11 Mathematics Chapter 4 Complex Number and Quadratic Equation Textual Question Answer. These solutions are part of NCERT All Subject Solutions. Here we have given NCERT Class 11 Mathematics Chapter 4 Complex Number and Quadratic Equation Solutions for All Subject, You can practice these here.

Complex Number and Quadratic Equation

Chapter – 4

Exercise 4.1

Express each of the complex number given in the Exercises 1 to 10 in the form a + ib.

Ans: 

= – 3i²

= -3(-1)     [i² = – 1]

= 3

Q2: i⁹ + i¹⁹.

Ans: i⁹ + i¹⁹ = i⁴ˣ²⁺¹ + i⁴ˣ⁴⁺³

WhatsApp Group Join Now
Telegram Group Join Now
Instagram Join Now

= (i⁴)² .i + (i⁴)⁴ .i³

= 1 x i + 1x (- i)        [ i⁴ =1, i³ = -i]

= 0

Q3: i⁻³⁹.

Ans: 

Q4. 3(7 + i7) + i(7 + i7).

Ans: 3(7+i7)+i(7+i7)= 21 + 21i + 7i + 7i²

= 21 + 28i + 7x(- 1)                [∵i² = -1]

= 14 + 28i

Q5. (1 – i) -(-1+i6).

Ans : (1 – i)-(-1+i6)= 1 – i + 1 – 6i 

= 2 – 7i

Q6:

Ans: 

Q7

.

Ans: 

Q8. (1 – i)⁴.

Ans: (1 – i)⁴ = [(1 – i)²]²

= [I² + i² – 2i]²

= [1 – 1 – 2i]²

=(-2i)²

= (- 2i) × (- 2i)

= 4i² = – 4

[i² = – 1]

Q9:

Ans: 

Q10

Ans: 

Find the multiplicative inverse of each of the complex numbers given in the Exercises 11 to 13.

Q11: 4 – 3i.

Ans: Let z= 4 – 3i 

Then, Z̅ = 4 + 3i and |z|² = 4² + (- 3)² = 16 + 9 = 25

Therefore, the multiplicative inverse of 4 – 3i is given by

Q12: √5 + 3i

Ans: Let z = √5 + 3i

Then, Z̅ = √5 – 3i and |z|² = (√5)² + 3² = 5 + 9 = 14

Therefore, the multiplicative inverse of √5 + 3i

is given by 

Q13: – i.

Ans: Let z = – i 

Then, Z̅ = i and |z|² = 1² = 1 

Therefore, the multiplicative inverse of – i is given by

Q14: Express the following expression in the form of a + ib.

Ans: 

Miscellaneous Exercise on Chapter 4

Ans: 

= [ -1-i ]³

=(-1)³ [1+I]³

= – [1³ + i³ + 3.1.i(1 + i)]

= – [1 – i³ + 3i – 3i²]

= – [1 – i + 3i – 3]

= – [- 2 + 2i]

= 2 – 2i

Q2: For any two complex numbers Z₁and Z₂ prove that Re (z₁ z₂) = Re z₁Re z₂ – Im z₁ Im Z₂

Ans: Let z₁ = x₁ + iy₁ and z₂ = x₂ + iy₂ 

∴ z₁ z₂ = (x₁ + iy₁)(x₂ + iy₂) 

= x₁ (x₂ + iy₂) + iy₁(x₂ + iy₂) 

= x₁ x₂ + ix₁ y₂ + iy₁x₂ + i² y₁y₂ 

= x₁x₂ + ix₁ y₂ + iy₁ x₂ – y₁y₂    [i²= – 1]

= (x₁x₂ – y₁y₂) + i(x₁y₂ + y₁x₂) 

⇒Re(z₁z₂) = x₁x₂ – y₁y₂

⇒Re(z₁z₂) = Re z₁Rez₂ – Im z₁ Im z₂

Hence, proved. 

Ans: 

Ans: 

Ans: 

Ans: 

7. Let z₁ = 2 – i, z₂= – 2 + i Find.

Ans:  z₁ z₂ = (2 – i)(- 2 + i) = – 4 + 2i + 2i – i² = – 4 + 4i – (- 1) = – 3 + 4i 

Z̅₁= 2 + i

On multiplying numerator and denominator by (2 – i), we obtain

Ans: 

8. Find the real numbers x and y if (x – iy)(3 + 5i) is the conjugate of – 6 – 24i.

Ans: Let z = (x – iy)(3 + 5i) 

z = 3x + 5xi – 3yi – 5yi² = 3x + 5xi – 3yi + 5y = (3x + 5y) + i(5x – 3y) 

∴ Z̅ = (3x + 5y) – i(5x – 3y) 

It is given that, Z̅ = – 6 – 24i 

∴ (3x + 5y) – i(5x – 3y) = – 6 – 24i 

Equating real and imaginary parts, we obtain 

3x + 5y = – 6                     ……(i)

5x – 3y = 24                     ……(ii) 

Multiplying equation (i) by 3 and equation (ii) by 5 and then adding them, we obtain 

9x + 15y = – 18 

Putting the value of x in equation (i), we obtain 

3(3) + 5y = – 6 

⇒ 5y = – 6 – 9 = – 15 

⇒ y = – 3 

Thus, the values of x and y are 3 and – 3 respectively.

Ans: 

Ans: (x + iy)³  = u + iv 

⇒x³ + (iy)³+ 3.x.iy(x + iy) = u + iv 

⇒x³ + i³ y³ + 3x² yi + 3xy² i² = u + iv 

⇒x³ – iy³ + 3x² yi – 3xy² = u + iv 

⇒ (x³ – 3xy²) + i(3x² y – y³) = u + iv 

On equating real and imaginary parts, we obtain

11. If a and ẞ are different complex numbers with |ẞ| = 1 , then find

Ans: For any complex number z, z z¹ = |z|²

It is given that |β| = 1 .

Then

|β|² = ββ’ = 1 

Now, (β-α)/(1 – α’β)| = |(β-α)/(ββ’ – α’β)| [because 1 = ββ’ ]

= Ιβ – α| / |β| β’ – α’

= |β – α| / 1 β’ – α’| [because |β| = 1 ]

= |β – α| / | (β-α)’ |

= 1 (because |z| = |z’|, for any complex number z)

Therefore, |(β-α)/(1 – α’β)| = 1

12. Find the number of non-zero integral solutions of the equation |1 – i|ˣ = 2ˣ.

Ans: |1 – i|ˣ = 2ˣ

⇒ (√1² + (- 1)²)ˣ = 2ˣ

⇒ (√2)ˣ = 2ˣ

⇒ 2ˣ/² = 2ˣ

⇒ x/2 = x

⇒ x = 2x

⇒2x – x = 0

⇒ x = 0

Thus, 0 is the only integral solution of the given equation. Therefore, the number of non-zero integral solutions of the given equation is 0.

13. If (a + ib) (c + id) (e + if) (g + i h) = A + iB then show that (a² + b²) (c²+ d²)(e² + f²) (g² + h²) = A² + B².

Ans: (a + ib)(c + id)(e + if)(g + i h) = A + iB

∴ |(a + ib)(c + id)(e + if)(g + i h)| = |A + iB|

 ⇒|(a + ib)|x|(c + id)|x|(e + if)|x|(g + i h)| = |A + iB|

[|z₁z₂| = |z₁||z₂|]

⇒ √a² + b² × √c² + d² × √e² + f² × √g² + h² = √A² + B²

On squaring both sides, we obtain 

(a² + b²)(c² + d²)(e² + f²)(g² + h²) = A² + B²

Hence, proved.

Ans: 

⇒iᵐ =1 

∴ m = 4k where k is some integer. 

Therefore, the least positive integer is 1. 

Thus, the least positive integral value of m is 4(= 4 x1 ).

Leave a Comment

Your email address will not be published. Required fields are marked *

This will close in 0 seconds

Scroll to Top