NCERT Class 11 Mathematics Chapter 7 Binomial Theorem

NCERT Class 11 Mathematics Chapter 7 Binomial Theorem Solutions, NCERT Solutions For Class 11 Maths, NCERT Class 11 Mathematics Chapter 7 Binomial Theorem Notes to each chapter is provided in the list so that you can easily browse throughout different chapter NCERT Class 11 Mathematics Chapter 7 Binomial Theorem Notes and select needs one.

NCERT Class 11 Mathematics Chapter 7 Binomial Theorem

Join Telegram channel

Also, you can read the CBSE book online in these sections Solutions by Expert Teachers as per (CBSE) Book guidelines. NCERT Class 11 Mathematics Chapter 7 Binomial Theorem Textual Question Answer. These solutions are part of NCERT All Subject Solutions. Here we have given NCERT Class 11 Mathematics Chapter 7 Binomial Theorem Solutions for All Subject, You can practice these here.

Binomial Theorem

Chapter – 7

Exercise 7.1

Expand each of the expressions in Exercises 1 to 5

1. (1 – 2x)⁵

Ans: By using Binomial Theorem, the expression (1 – 2x)⁵ can be expanded as 

(1 – 2x)⁵  

= ⁵C₀ (1)⁵  – ⁵C₁ (1)⁴ (2x) + ⁵C₂ (1)³ (2x)² – ⁵C₃ (l)² (2x)³ + ⁵C₄ (l)¹ (2x)⁴ – ⁵C₅ (2x)⁵

= 1 – 5(2x) + 10(4x²) – 10(8x³) + 5(16x⁴) – (32x⁵)

= 1 – 10x + 40x² – 80x³ + 80x⁴ – 32x⁵

WhatsApp Group Join Now
Telegram Group Join Now
Instagram Join Now

Ans: 

3. (2x – 3)⁶.

Ans: By using Binomial Theorem, the expression ( 2 x – 3)⁶ can be expanded as 

(2x – 3)⁶ = ⁶C₀ (2x)⁶ – ⁶C₁ (2x)³ (3) + ⁶C₂ (2x)⁴ (3)²  – ⁶C₃ (2x)³ (3)³ 

+ ⁶C₄ (2x)² (3)⁴ – ⁶C₅ (2x) (3)⁵ + ⁶C₆ (3)⁶ 

= 64x⁶ – 6(32x⁵)(3) + 15(16x⁴)(9) – 20(8x³)(27) 

+ 15(4x²)(81) – 6(2x)(243) + 729 

= 64x⁶ – 576x⁵ + 2160x⁴ – 4320x³ + 4860x² – 2916x + 729

Ans: 

Ans: 

Using binomial theorem, evaluate each of the following:

6. (96)³.

Ans: 96 can be expressed as the sum or difference of two numbers whose powers are easier to calculate and then, a binomial theorem can be applied.

It can be written that, 96 =100 – 4

∴ (96)³ = (100 – 4)³ 

= ³C₀ (100)³ – ³C₁ (100)² (4) + ³C₂ (100)(4)² – ³C₃ (4)³

= (100)³ – 3(100)²  (4) + 3(100) (4)² – (4)³ 

= 1000000 – 120000 + 4800 – 64 

=884736

7. (102)⁵.

Ans: 102 can be expressed as the sum or difference of two numbers whose powers are easier to calculate and then, Binomial Theorem can be applied.

It can be written that, 102 = 100+2

∴ (102)⁵ = (100 + 2)⁵

= ⁵C₀  (100)⁵ + ⁵C₁ (100)⁴ (2) + ⁵C₂ (100)³ (2)² + ⁵C₃ (100)² (2)³ 

+ ⁵C₄ (100) (2)⁴ + ⁵C₅ (2)⁵

= (100)⁵ + 5(100)⁴ (2) + 10(100)³ (2)² + 10(100)² (2)³ + 5(100) (2)⁴ + (2)⁵

=10000000000+1000000000+40000000+800000+8000+32 

= 11040808032

8. (101)⁴.

Ans: 101 can be expressed as the sum or difference of two numbers whose powers are easier to calculate and then, Binomial Theorem can be applied.

It can be written that, 101 = 100 + 1 

∴ (101)⁴  = (100 + 1)⁴ 

= ⁴C₀ (100)⁴ + ⁴C₁ (100)³ (1) + ⁴C₂ (100)² (1)² + ⁴C₃ (100) (1)³  + ⁴C₄ (1)⁴ 

= (100)⁴ + 4(100)³ + 6(100)² + 4(100) + (1)⁴

= 10000000 + 4000000 + 60000 + 400 + 1 

= 104060401

9. (99)⁵.

Ans: 99 can be written as the sum or difference of two numbers whose powers are easier to calculate and then, Binomial Theorem can be applied.

It can be written that, 99 = 100 – 1

∴ (99)⁵ = (100 – 1)⁵

= ⁵C₀ (100)⁵ – ⁵C₁ (100)⁴ (1) + ⁵C₂ (100)³ (l)² – ⁵C₃ (100)² (1)³ 

+ ⁵C₄ (100) (1)⁴ – ⁵C₅ (1)⁵ 

= (100)⁵ – 5(100)⁴ + 10(100)³ – 10(100)² + 5(100) – 1 

=10000000000-500000000+10000000-100000+500-1 

= 10010000500-500100001 

= 9509900499

10. Using Binomial Theorem, indicate which number is larger (1.1)¹⁰⁰⁰⁰ or 1000.

Ans: By splitting 1.1 and then applying Binomial Theorem, the first few terms of (1.1)¹⁰⁰⁰⁰ can be obtained as 

(1.1)¹⁰⁰⁰⁰ = (1+0.1)¹⁰⁰⁰⁰ 

= ¹⁰⁰⁰⁰C₀ + ¹⁰⁰⁰⁰C₁ (1.1) + Other positive terms

=1+10000×1.1 + Other positive terms 

=1+11000+Other positive terms 

> 1000

Hence, (1.1)¹⁰⁰⁰⁰ > 1000

11. Find (a + b)⁴  – (a – b)⁴ Hence, evaluate (√3 + √2 )⁴ – (√3 – √2)⁴.

Ans: 

Putting a = √3 and b = √2

(√3 + √2)⁴ – (√3 – √2)⁴= 8 √3 . √2 [( √3 )² +(√2 )²]

=8. √6[3 + 2] 

= 40√6

12. Find (x + 1)⁶ + (x – 1)⁶  Hence or otherwise evaluate (√2 + 1)⁶ + (√2 – 1)⁶.

Ans:

13. Show that 9ⁿ⁺¹ – 8n – 9 is divisible by 64, whenever n is a a positive integer. 

Ans: In order to show that 9ⁿ⁺¹ – 8n – 9 is divisible by 64, it has to be proved that, 

9ⁿ⁺¹ – 8n – 9 = 64k, where k is some natural number 

By Binomial Theorem, 

(1 + a)ᵐ = ᵐC₀ + ᵐC₁a + ᵐC₂a² +…+ ᵐCₘ aᵐ

For a = 8 and m = n + 1, we obtain 

Ans: 

Miscellaneous Exercise on Chapter 7

1. If a and b are distinct integers, prove that a – b is a factor of aⁿ – bⁿ , whenever n is a positive integer. 

[Hint write aⁿ = (a – b + b)ⁿ and expand]

Ans: In order to prove that (a – b) is a factor of ( aⁿ – bⁿ), it has to be proved that 

aⁿ – bⁿ = k(a – b), where k is some natural number

It can be written that, a = a a – b + b 

∴ aⁿ =(a-b+b)ⁿ = [(a – b) + b]ⁿ 

This shows that (a – b) is a factor of (aⁿ – b”), where n is a positive integer.

2. Evaluate (√3 + √2)⁶ – (√3 – √2)⁶.

Ans: Firstly, the expression (a + b)⁶ – (a – b)⁶ is simplified by using Binomial Theorem. This can be done as 

(a+b)⁶ = ⁶C₀ a⁶ + ⁶C₁a⁵b + ⁶C₂a⁴ b² + ⁶C₃a³b³ + ⁶C₄ a² b⁴ + ⁶C₅ a¹ b⁵ + ⁶C₆ b₆ 

= a⁶ + 6a⁵ b + 15a⁴ b² + 20a³ b³ + 15a² b⁴ + 6ab⁵ + b⁶ 

(a-b)⁶ = ⁶C₀ a⁶ – ⁶C₁ a⁵ b + ⁶C₂ a⁴ b² – ⁶C₃ a³ b³+ ⁶C₄ a² b⁴ – ⁶C₅ a¹ b⁵ + ⁶C₆ b₆ 

= a⁶ – 6a⁵ b + 15a⁴ b² – 20a³ b³ + 15a² b⁴ – 6ab⁵ + b⁶ 

∴ (a + b)⁶ – (a – b)⁶ = 2[6a⁵ b + 20a³ b³ + 6ab⁵] 

Putting a = √3 and b = √2, we obtain 

(√3 + √2)⁶ – (√3 – √2)⁶ = 2[6(√3)⁵  (√2) + 20(√3)³  (√2)³ + 6(√3) (√2)⁵] 

= 2[54√6 + 120√6 + 24√6] 

= 2 × 198√6 

= 396√6

Ans: Firstly, the expression (x + y)⁴ + (x – y)⁴ is simplified by using Binomial Theorem.

This can be done as

(x+y)⁴ = ⁴C₀ x⁴ + ⁴C₁ x³y + ⁴C₂ x²y² + ⁴C₃xy³ + ⁴C₄ y⁴

= x⁴+ 4x³ y + 6x²y² + 4xy³ + y⁴ 

(x-y)⁴ = ⁴C₀ x⁴ – ⁴C₁ x³y + ⁴C₂ x² y² – ⁴C₃ xy³+ ⁴C₄ y⁴

= x⁴ – 4x ³ y + 6x²y²- 4xy³ + y⁴

∴(x + y)⁴ + (x – y)⁴ = 2(x⁴ + 6x²y² + y⁴)

Putting x = a² and y = √a² – 1, we obtain 

( a² + √a² -1 )⁴ + (a² – √a ² – 1)⁴ = 2[(a²)⁴ + 6(a²)² (√a² – 1)² + (√a² – 1)]

= 2[a⁸ + 6a⁴ (a² – 1) + (a² – 1)² ] 

= 2[a⁸+ 6a⁶ – 6a⁴ + a⁴ – 2a² + 1]

= 2[a⁸ + 6a⁶ – 5a⁴ – 2a² + 1]

= 2a⁸ + 12a⁶ – 10a⁴ – 4a² + 2

4. Find an approximation of (0.99)⁵ using the first three terms of its expansion.

Ans: 0.99 =1 – 0.01

∴ (0.99)⁵ = (1 – 0.01)⁵ 

= ⁵C₀ (1)⁵ – ⁵C₁ (1)⁴ (0.01)+ ⁵C₂ (1)³ (0.01)² 

(Approximately)

= 1 – 5(0.01) + 10(0.01)²

= 1 – 0.05+0.001 

=1.001-0.05 

= 0.951 

Thus, the value of (0.99)⁵ is approximately 0.951.

Ans: 

6. Find the expansion of (3x² – 2ax + 3a²)³ using the binomial theorem.

Ans: Using Binomial Theorem, the given expression [(3x² – 2ax + 3a²]³can be expanded as

[(3x² – 2ax)+ 3a²]³

= ³C₀ (3x² – 2ax)³ + ³C₁  (3x² – 2ax)² (3a²) + ³C₂(3x² -2ax)(3a²)² + ³C₃ (3a²)³ 

= (3x² – 2ax)³ + 3(9x⁴ – 12ax³ + 4a²x²)(3a²) + 3(3x² – 2ax)(9a⁴) + 27a⁶ 

= (3x² – 2ax)³ + 81a²x⁴ – 108a³x³ + 36a⁴ x² + 81a⁴ x² – 54a⁵ x + 27a⁶ 

= (3x² – 2ax)³ + 81a² x⁴ – 108a³ x³ + 117a⁴x²- 54a⁵ x + 27a⁶                           ……..(1)

Again by using Binomial Theorem, we obtain 

(3x² – 2ax)³ 

= ³C₉ (3x²)³ – ³C₁ (3x²)² (2ax) + ³C₂ (3x²)(2ax)² – ³C₃ (2ax)³

= 27x⁶ – 3(9x⁴)(2ax) + 3(3x²)(4a² x²) – 8a³ x³

= 27x⁶ – 54ax⁵ + 36a² x⁴ – 8a³x³    ……..(2)

From (1) and (2), we obtain 

(3x² – 2ax + 3a²)³ 

= 27x⁶ – 54ax⁵+ 36a² x⁴ – 8a³x³ + 81a²x⁴ – 108a³x³ + 117a⁴x² – 54a⁵ x + 27a⁶

= 27x⁶ – 54ax⁵ + 117a²x⁴ – 116a³x³ + 117a⁴x² – 54a²x +27a⁶

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top