SEBA Class 10 Mathematics Chapter 8 Introduction to Trigonometry

SEBA Class 10 Mathematics Chapter 8 Introduction to Trigonometry Solutions, SEBA Class 10 Maths Textbook Notes in English Medium, SEBA Class 10 Mathematics Chapter 8 Introduction to Trigonometry Notes in English to each chapter is provided in the list so that you can easily browse throughout different chapter Assam Board SEBA Class 10 Mathematics Chapter 8 Introduction to Trigonometry Notes and select needs one.

SEBA Class 10 Mathematics Chapter 8 Introduction to Trigonometry

Join Telegram channel

Also, you can read the SCERT book online in these sections Solutions by Expert Teachers as per SCERT (CBSE) Book guidelines. SEBA Class 10 Mathematics Chapter 8 Introduction to Trigonometry Question Answer. These solutions are part of SCERT All Subject Solutions. Here we have given SEBA Class 10 Mathematics Chapter 8 Introduction to Trigonometry Solutions for All Subject, You can practice these here.

Introduction to Trigonometry

Chapter – 8

Exercise 8.1

1. In ∆ABC right angled at B, AB = 24cm, BC = 7cm. Determine:

(i) sin A, cosA

(ii) sin C, cosC

Ans: Applying Pythagoras theorem for ∆ABC, we obtain

AC2 = AB2 + BC2

= (24 cm)2 + (7 cm)2

WhatsApp Group Join Now
Telegram Group Join Now
Instagram Join Now

= (576 + 49) cm2

= 625 cm2

∴ AC = cm = 25 cm

2. In the given figure find tanP − cotR. 

Ans: Applying Pythagoras theorem for ∆PQR, we obtain

PR2 = PQ2 + QR2

(13 cm)2 = (12 cm)2 + QR2

169 cm2 = 144 cm2 + QR2

25 cm2 = QR2

QR = 5 cm

3. If sin A = 3/4, calculate cosA and tanA.

Ans: 

4. Given 15 cotA = 8, find sinA and secA.

Ans: Consider a right-angled triangle, right-angled at B.  

5. Given secθ = 13/12, calculate all other trigonometric ratios.

Ans:  

If AC is 13k, AB will be 12k, where k is a positive integer.

Applying Pythagoras theorem in ∆ABC, we obtain

(AC)2 = (AB)2 + (BC)2

(13k)2 = (12k)2 + (BC)2

169k2 = 144k2 + BC2

25k2 = BC2

BC = 5k

6. If ∠A and ∠B are acute angles such that cosA = cosB, then show that ∠A = ∠B.

Ans: Let us consider a triangle ABC in which CD ⊥ AB.

It is given that cosA = cosB

AB/AC = BD/BC …(1)

We have to prove ∠A = ∠B. To prove this, let us extend AC to P such that BC = CP.

7.  If cot θ = ⅞  evaluate 

Ans: Let us consider a right triangle ABC, right-angled at point B.

If BC is 7k, then AB will be 8k, where k is a positive integer. Applying Pythagoras theorem in ∆ABC, we obtain  

AC2 = AB2 + BC2

= (8k)2 + (7k)2

= 64k2 + 49k2

= 113k2 

(ii) cot2 θ

Ans:

Ans: If 3 cot A = 4, 

It is given that 3 cot = 3/4 A = 4 Or, cot A = Consider a right triangle ABC, right-angled at point B. 

If AB is 4k, then BC will be 3k, where k is a positive integer.

In ∆ABC,

(AC)2 = (AB)2 + (BC)2

= (4k)2 + (3k)2

= 16k2 + 9k2

= 25k2

AC = 5k 

9. In triangle ABC, right-angled at B, if tan A = 1/√3, find the value of:

(i) sinA cosC + cosA sinC

(ii) cosA cosC – sinA sinC

10. In ∆PQR, right angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sinP, cosP and tanP.

Ans: Given that, PR + QR = 25 cm

 PQ = 5 cm

Let PR be x. 

Therefore, QR = (25 − x)cm

Applying Pythagoras theorem in ∆PQR, we obtain

PR2 = PQ2 + QR2

x2 = (5)2 + (25 − x)2

x2 = 25 + 625 + x2 − 50x

50x = 650

x = 13

Therefore, PR = 13 cm

QR = (25 − 13) cm = 12 cm

11. State whether the following are true or false. Justify your answer.

(i) The value of tan A is always less than 1.

Ans: (i) Consider a ∆ABC, right-angled at B.

So, tan A < 1 is not always true.

Hence, the given statement is false.

Let AC be 12k, AB will be 5k, where k is a positive integer.

Applying Pythagoras theorem in ∆ABC, we obtain

AC2 = AB2 + BC2

(12k)2 = (5k)2 + BC2

144k2 = 25k2 + BC2

BC2 = 119k2.         

BC = 10.9k

It can be observed that for given two sides AC = 12k and AB = 5k,

BC should be such that,

AC − AB < BC < AC + AB

12k − 5k < BC < 12k + 5k

7k < BC < 17 k

However, BC = 10.9k. Clearly, such a triangle is possible and hence, such value of sec A is possible.

Hence, the given statement is true. 

(iii) cos A is the abbreviation used for the cosecant of angle A.

Ans: The abbreviation used for cosecant of angle A is cosec A. And cos A is the

abbreviation used for the cosine of angle A.

Hence, the given statement is false. 

(iv) cot A is the product of cot and A

Ans: cot A is not the product of cot and A. It is the cotangent of ∠A. Hence, the given statement is false.

(v) sin θ = 3/4, for some angle θ

Ans: sin θ = ¾  We know that in a right-angled triangle,

In a right-angled triangle, the hypotenuse is always greater than the remaining two sides.

Therefore, such a value of sin θ is not possible.

Hence, the given statement is false.

Exercise 8.2

1. Evaluate the following:

(i) sin60° cos30° + sin30° cos 60°

Ans: sin60° cos30° + sin30° cos 60° 

(ii) 2tan245° + cos230° − sin260°

Ans: 

Ans:  

2. Choose the correct option and justify your choice. 

(a) sin60° 

(b) cos60° 

(c) tan60° 

(d) sin30°

Ans: (a) sin60° 

(a) tan90° 

(b) 1 

(c) sin45° 

(d) 0 

Ans: (d) 0 

(iii) sin2A = 2sinA is true when A =

(a) 0° 

(b) 30° 

(c) 45° 

(d) 60° 

Ans: (a) 0°

(a) cos60° 

(b) sin60° 

(c) tan60° 

(d) sin30° 

Ans: (c) tan60° 

3. 

Ans: tan (A + b) √3

tan (A + B) = tan 60

⇒ A + B  = 60 ….(1)

⇒ A – B = 30 …(2) 

On adding both equations, we obtain

2A = 90

⇒ A = 45

From equation (1), we obtain

45 + B = 60

B = 15

Therefore, ∠A = 45° and ∠B = 15°

4. Value of sinθ cos(90° – θ) + cosθ sin(90° – θ) is-

(a) -1

(b) 0

(c) 1

(d) 2

Ans: (c) 1

5. State whether the following are true or false. Justify your answer.

(i) sin (A + B) = sin A + sin B

Ans: sin (A + B) = sin A + sin B Let A = 30° and B = 60°

sin (A + B) = sin (30° + 60°)

= sin 90° = 1

And sin A + sin B = sin 30° + sin 60°

Clearly, sin (A + B) ≠ sin A + sin B

Hence, the given statement is false.

(ii) The value of sinθ increases as θ increases.

Ans: The value of sin θ increases as θ  increases in the interval of 0° < θ < 90° as sin 0° = 0 

(iii) The value of cos θ increases as θ increases

Ans: 

cos 90° = 0

It can be observed that the value of cos θ does not increase in the interval of 0°<θ<90°.

Hence, the given statement is false. 

(iv) sinθ = cos θ for all values of θ

Ans: sin θ = cos θ for all values of θ. This is true when θ = 45° 

It is not true for all other values of θ.

(v) cot A is not defined for A = 0° 

Ans: 

Exercise 8.3

1. Evaluate:

Ans: 

Ans:

Ans:

(iv) cosec 31° − sec 59°

= cosec (90° − 59°) − sec 59°

= sec 59° − sec 59°

= 0 

2. Show that

(i) tan 48° tan 23° tan 42° tan 67° = 1

Ans: tan 48° tan 23° tan 42° tan 67°

= tan (90° − 42°) tan (90° − 67°) tan 42° tan 67°

= cot 42° cot 67° tan 42° tan 67°

= (cot 42° tan 42°) (cot 67° tan 67°)

= 1

(ii) cos 38° cos 52° − sin 38° sin 52° = 0

Ans: cos 38° cos 52° − sin 38° sin 52°

= cos (90° − 52°) cos (90°−38°) − sin 38° sin 52°

= sin 52° sin 38° − sin 38° sin 52°

= 0 

3. If tan 2A = cot (A − 18°), where 2A is an acute angle, find the value of A.

Ans: Given that, tan 2A = cot (A− 18°)

⇒ cot (90° − 2A) = cot (A −18°)

⇒ 90° − 2A = A− 18°

⇒ 108° = 3A

A = 36° 

4. If tan A = cot B, prove that A + B = 90°

Ans: Given that, tan A = cot B

tan A = tan (90° − B)

A = 90° − B

A + B = 90°

 5. If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.

Ans: Given that, sec 4A = cosec (A − 20°)

⇒ cosec (90° − 4A) = cosec (A − 20°)

⇒ 90° − 4A = A− 20°

⇒ 110° = 5A

A = 22° 

6. If A, B and C are interior angles of a triangle ABC, then show that 

Ans: We know that for a triangle ABC,

∠ A + ∠B + ∠C = 180°

∠B + ∠C= 180° − ∠A

7. Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°. 

Ans: sin 67° + cos 75°

= sin (90° − 23°) + cos (90° − 15°)

= cos 23° + sin 15°

8. (i) If sec5θ = cosec(θ – 36°) where θ is an acute angle. Then find the value of θ.

Ans: Sec5θ = Cosec (θ – 36°)

Again, Sec5θ = Cosec (90° – 5θ)

∴ Cosec (90° – 5θ) = Cosec (θ – 36°)

⇒ 90° – 5θ = θ – 36°

⇒ -6θ = -126° ∴ θ = 126°/6 = 21°

(ii) If sinA = cos 30°, A < 90°. Find the value of A.

Ans: Sin A = Cos 33°

Sin A = Cos(90° – A)

∴ 90° – A = 33°

⇒ -A = 33° – 90°

⇒ -A = -57 ∴ A = 57°

(iii) sin2A = cos(A + 15°) where 2A < 90°. Find the value of A.

Ans: Sin2 A = Cos (A + 15°)

Sin2 A = Cos (90° – 2A)

∴ Cos (A + 15°) = Cos (90° – 2A)

⇒ A + 15° = 90° – 2A

⇒ 3A = 90° – 15°

⇒ 3A = 75° ∴ A = 75°/3 = 25°

(iv) If sin(3x + 10) = cos(x + 24), then find the value of x.

Ans: Sin (3x + 10°) = Cos (x + 24°)

Sin (3x + 10°) = Cos {90° – (3x + 10°)}

∴ Cos (x + 24°) = Cos {90° – (3x + 10°)}

⇒ x + 24° = 90° – 3x – 10°

⇒ 4x = 80° – 24°

⇒ 4x = 56°

∴ x = 56°/4 = 14°

Exercise 8.4

1. Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.

Ans:

2. Write all the other trigonometric ratios of ∠A in terms of sec A.

Ans: We know that,

3. Evaluate:

Ans:

Ans:

4. Choose the correct option. Justify your choice.

(i) 9 sec2 A – 9 tan2 A =

(a) 1

(b) 9

(c) 8

(d) 0

Ans: (b) 9 

(ii) (1 + tan  + sec ) (1 + cot  – cosec ) =

(a) 0

(b) 1

(c) 2

(d) -1

Ans: (a) 0 

(iii) (sec A + tan A) (1 – sin A) =

(a) sec A

(b) sin A

(c) cosec A

(d) cos A

Ans: (d) cos A

(iv) 1 + tan2 A/1 + Cot2 A

(a) sec2 A

(b) -1

(c) cot2 A

(d) tan2 A

Ans: (d) tan2 A.

54. Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

Ans: 

Ans: 

Ans:

Ans:  

Ans: 

Ans: 

Ans: 

6. Prove that:

Ans: LHS = tan4θ + tan2θ

= tan2θ + (1 + tan2θ)

= (Sec2θ – 1). Sec2θ

= Sec4θ – Sec2θ = RHS.

Ans:

Ans:

(iv) cotθ + tanθ = secθ = secθcosecθ

Ans: LHS = Cotθ + tanθ

Ans:

Leave a Comment

Your email address will not be published. Required fields are marked *

This will close in 0 seconds

Scroll to Top