NCERT Class 11 Mathematics Chapter 12 Limits and Derivatives

NCERT Class 11 Mathematics Chapter 12 Limits and Derivatives Solutions, NCERT Solutions For Class 11 Maths, NCERT Class 11 Mathematics Chapter 12 Limits and Derivatives Notes to each chapter is provided in the list so that you can easily browse throughout different chapter NCERT Class 11 Mathematics Chapter 12 Limits and Derivatives Notes and select needs one.

NCERT Class 11 Mathematics Chapter 12 Limits and Derivatives

Join Telegram channel

Also, you can read the CBSE book online in these sections Solutions by Expert Teachers as per (CBSE) Book guidelines. NCERT Class 11 Mathematics Chapter 12 Limits and Derivatives Textual Question Answer. These solutions are part of NCERT All Subject Solutions. Here we have given NCERT Class 11 Mathematics Chapter 12 Limits and Derivatives Solutions for All Subject, You can practice these here.

Limits and Derivatives

Chapter – 12

Exercise 12.1

Evaluate the following limits in Exercises 1 to 22.

Ans: 

Ans: 

Ans: 

Ans: 

Ans: 

Ans: 

WhatsApp Group Join Now
Telegram Group Join Now
Instagram Join Now

Ans: At x = 2 the value of the given rational function takes the form 0/0.

Ans: At x = 2 the value of the given rational function takes the form 0/0 .

Ans: 

Ans: 

Ans: 

Ans: 

At x = – 2 , the value of the given function takes the form 0/0

Ans: 

At x = 0 , the value of the given function takes the form 0/0.

Ans: 

At x = 0 , the value of the given function takes the form 0/0.

Ans: 

Ans: 

Ans: 

At x = 0 , the value of the given function takes the form 0/0.

Now,

Ans: 

At x = 0 , the value of the given function takes the form 0/0.

Now,

Ans: 

Ans: At x = 0, the value of the given function takes the form 0/0.

Now,

Ans: At x = 0, the value of the given function takes the form∞-∞. 

Now,

Ans: 

Ans: The given function is 

Ans: The given function is

Ans: The given function is

Ans: The given function is

Ans: 

Ans: The given function is

⇒ a + b = 4 and b – a = 4 

On solving these two equations, we obtain a = 0 and b = 4

Thus, the respective possible values of a and b are 0 and 4.

Ans: 

Ans: The given function is

when a < 0, 

when a > 0

Ans: 

Ans: The given function is

Exercise 12.1

1. Find the derivative of x² – 2 at x = 10 

Ans: Let f(x) = x² – 2. Accordingly,

Thus, the derivative of x² – 2 at x = 10 is 20.

2. Find the derivative of x at x = 1

Ans: Letf(x) = x. Accordingly,

Thus, the derivative of x at x = 1 is 1.

3. Find the derivative of 99x at x = 100 

Ans: Let f(x) = 99x . Accordingly,

Thus, the derivative of 99x at x = 100 is 99.

4. Find the derivative of the following functions from first principle.

(i) x³ – 27

Ans: Let f(x) = x3 – 27 According to the first principle,

(ii) (x – 1)(x – 2)

Ans: Let f(x) = (x – 1)(x – 2) Thus according to first principle,

Ans: 

Ans: 

5. For the function

Prove that f'(1) = 100f'(0) .

Ans: The given function is 

= x⁹⁹ + x⁹⁸ +…+x+1 

∴ f’ (x)= x⁹⁹ + x⁹⁸ +…+x+1 

At x = 0 

f’ (0) = 1, 

At x = 1, 

f'(1) = 1⁹⁹+1⁹⁸ +…+1+1=[1+1+…+1+1]₁₀₀ ₜₑᵣₘₛ 

=1×100=100

Thus, f’ (1) = 100 × f’ (0) 

6. Find the derivative of xⁿ + axⁿ⁻¹ + a²xⁿ⁻² +…+aⁿ⁻¹x+aⁿ for some fixed real number a.

Ans: Let f(x)= xⁿ + axⁿ⁻¹ + a² xⁿ⁻² +…+aⁿ⁻¹ x + aⁿ

f’ (x)= nxⁿ⁻¹ + a(n – 1) xⁿ⁻² + a² (n – 2) xⁿ⁻³ +…+aⁿ⁻¹ +aⁿ (0) 

= nxⁿ⁻¹ + a(n – 1) xⁿ⁻² + a² (n – 2) xⁿ⁻³ +…+aⁿ⁻¹

7. For some constants a and b, find the derivative of

(i) (x – a)(x – b)

Ans: Let f(x) = (x – a)(x – b) 

⇒ f(x) = x² – (a + b)x + ab

f’  (x) = 2x – (a + b) + 0 = 2x – a – b

(ii) (ax² + b)²

Ans: Let f(x) = (ax²+b)²

⇒ f(x) = a²x⁴ + 2abx² + b²

f’ (x) = a² (4x³) + 2ab(2x) + b² (0) 

= 4a²x³ + 4abx 

= 4ax(ax² + b)

Ans: 

By quotient rule,

8. Find the derivative of for some constant a.

Ans: 

9. Find the derivative of

Ans: 

= 2 – 0

= 2

(ii) (5x³ + 3x – 1)(x – 1)

Ans: Let f(x) = (5x³ + 3x – 1)(x – 1)

By Leibnitz product rule,

= (5x³+3x-1)(1)+(x-1)(5.3x² +3-0) 

= (5x³ + 3x – 1) + (x – 1)(15x² + 3) 

= 5x³ + 3x – 1 + 15x³ + 3x – 15x² – 3 

= 20x³ – 15x² + 6x – 4

(iii) x⁻³ (5 + 3x)

Ans: Let f(x) = x⁻³ (5 + 3x)

By Leibnitz product rule,

= x⁻³ (0 + 3) + (5 + 3x)(- 3x⁻³⁻¹) 

= x⁻³ (3) + (5 + 3x)(- 3x⁻⁴) 

= 3x⁻³ – 15x⁻⁴ – 9x⁻³ 

= – 6x⁻³ – 15x⁻⁴

(iv) x⁵ (3 – 6x⁻⁹)

Ans: Let f(x) = x⁵ (3 – 6x⁻⁹).

By Leibnitz product rule,

= x⁵ {0 – 6(- 9) x⁻⁹⁻¹} + (3 – 6x⁻⁹)(5x⁴) 

= x⁵ (54x⁻¹⁰) + 15x⁴ – 30x⁻⁵ 

= 54x⁻⁵ + 15x⁴ – 30x⁻⁵ 

= 24x⁻⁵ + 15x⁴

(v) x⁻⁴ (3 – 4x⁻⁵)

Ans: Let f(x) = x⁻⁴ (3 – 4x⁻⁵)

By Leibnitz product rule

= x⁻⁴ {0 – 4(- 5) x⁻⁵⁻¹} + (3 – 4x⁻⁵)(- 4) x⁻⁴⁻¹

= x⁻⁴ (20x⁻⁶) + (3 – 4x⁻⁵)(- 4x⁻⁵) 

= 20x⁻¹⁰ – 12x⁻⁵ + 16x⁻¹⁰ 

= 36x⁻¹⁰ – 12x⁻⁵

Ans: Let f(x) = 

10. Find the derivative of cos x from first principle.

Ans: Let f(x) = cos x Accordingly, from the first principle,

11. Find the derivative of the following functions:

(i) sin x cos x

Ans: Letf (x) = sin x cos x. Accordingly, from the first principle,

(ii) sec x

Ans: Letf (x) = sec x. Accordingly, from the first principle,

(iii) 5sec(x) + 4cos x

Ans: Letf(x) = 5sec(x) + 4cos x Accordingly, from the first principle,

(iv) cosec x

Ans: Let f (x) = cosec x. Accordingly, from the first principle,

(v) 3 cot x + 5 cosec x

Ans: Let f(x) = 3 cot x + 5 cosec x Accordingly, from the first principle,

= – cosec x cot x                             …..(3) 

From (1), (2), and (3), we obtain 

f’ (x) = – 3cosec² x – 5 cosec x cot x.

(vi) 5sin x – 6cos x + 7

Ans: Let f(x) = 5sin x – 6cos x + 7.Accordingly, from the first principle,

= 5 cos x.1-6[(-cosx).(0)-sinx.1] 

= 5 cosx+6 sin x

(vii) 2 tan x – 7 sec x

Ans: Let f(x) = 2 tan x – 7 sec x.Accordingly, from the first principle,

Miscellaneous Exercise on Chapter 12

1. Find the derivative of the following functions from first principle:

(i) -x

Ans: Let f(x) = -x.Accordingly, f(x+h) = -(x+h)

By first principle

(ii) (- x)⁻¹

Ans: 

(iii) sin(x + 1)

Ans: Let f(x) = sin(x + 1) . Accordingly, f(x + h) = sin(x + h + l)

By first principle,

Ans: let 

By first principal,

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

2. (x + a)

Ans: Let f(x) = x + a. Accordingly, f(x+h)=x+h+a 

By first principle,

3. 

Ans: 

4. (a x + b) (cx + d)²

Ans: 

Ans: 

Ans: 

Ans: 

Let 

By quotient rule,

Ans: 

Ans: 

Ans: 

11. 4√x – 2.

Ans: Let f (x) = 4√x – 2.

12. (a x + b)ⁿ.

Ans: Let f (x) = (ax+b)ⁿ. Accordingly. f (x+h) = {a(x+h)+b}ⁿ = (ax+ah+b)ⁿ

By first principle,

13. (ax + b)ⁿ (cx + d)ᵐ

Ans: Let f(x) = (ax+b)ⁿ (cx+d)ᵐ 

By Leibnitz product rule,

Therefore, from (1), (2), and (3), we obtain 

f’ (x) = (ax + b)ⁿ {mc(cx + d)ᵐ⁻¹} + (cx + d)ᵐ {na (ax + b)ⁿ⁻¹} 

= (ax + b)ⁿ⁻¹ (cx + d)ᵐ⁻¹ [mc(ax + b) + na(cx + d)]

14. sin(x + a)

Ans: Let f(x) = sin(x + a) 

f(x + h) = sin(x + h + a) 

By first principle,

15. cosec x cot x

Ans: Let f(x) cosec x cot x 

By Leibnitz product rule,

f’ (x) = cosec x (cot x)’ + cot x(cosec x)’      …(1)

Let f₁ (x) = cot x . Accordingly. f₁ (x + h) = cot(x + h) 

By first principle, 

=-cosec²x

∴ (cot x)’ = – cosec² x                   ……(2)

Now, let f₂(x) = cosec x. Accordingly, f₂(x+h) = cosec(x+h) 

By first principle, 

= – cos ecx . cot x

∴ (cosec x)’ =-cos x.cot x                 …..(3)

From (1), (2), and (3), we obtain 

f’ (x) = cosec x (- cosec² x) + cot x (- cosec x  cot x) 

= – coseck³ x – cot² x cosec x.

Ans: 

Ans: Let

By quotient rule,

Ans: 

By quotient rule,

19. sinⁿ x

Ans: Let y = sinⁿ x. 

Accordingly, for n = 1 , y = sin x.

For n = 2 , y = sin² x.

= (sin x)’ sin x + sin x (sin x)’  [By Leibnitz product rule]

= cos x sin x + sin x cos x

= 2sin x cos x                             ……(1)

For n = 3 , y = sin³ x

= (sin x)’ sin² x + sin x (sin² x)’   [By Leibnitz product rule] 

= cos x sin² x + sin x (2sin x cos x)   [Using (1)]

= cos x sin² x + 2sin² x cos x 

= 3sin² x cos x

We assert that

Let our assertion be true for n = k

= (sin x)’ sinᵏ x + sin x (sinᵏ x)’ [By Leibnitz product rule] 

= cos x sinᵏ x + sin x (k sinᵏ⁻¹ x cos x) [Using (2)]

= cos x sinᵏ x + k sinᵏ x cos x 

= (k + 1) sinᵏ x cos x 

Thus, our assertion is true for n = k + 1 

Hence, by mathematical induction

Ans: 

Ans: 

Let g(x) = sin(x+a). Accordingly, g(x+h) = sin(x+h+a) 

By first principle,

= cos(x + a)                          ……(ii)

From (i) and (ii), we obtain

22. x⁴ (5sin x – 3cos x)

Ans: Let f(x) = x⁴ (5sin x – 3cos x) 

By product rule,

= x⁴ [5cos x – 3(- sin x)] + (5sin x – 3cos x)(4x³) 

= x³ [5x cos x + 3x sin x + 20sin x – 12cos x]

23. (x² + 1) cos x

Ans: Let f(x) = (x² + 1) cos x 

By product rule,

= (x² + 1)(- sin x) + cos x (2x) 

= – x² sin x – sin x + 2x cos x

24. (ax² + sin x)(p + q cos x).

Ans: Let f(x) = (ax² + sin x)(p + q cos x)

By product rule,

= (ax² + sin x)(- q sin x) + (p + q cos x)(2ax + cos x)

= – q sin x (ax² + sin x) + (p + q cos x)(2ax + cos x)

25. (x + cos x)(x – tan x)

Ans: Let f(x) = (x+cosx)(x-tanx)

By product rule,

Let g(x) = tan x Accordingly, g(x + h) = tan(x + h)

By first principle,

= sec² x                                       … (ii)

Therefore, from (i) and (ii), we obtain 

f’ (x) = (x + cos x)(1 – sec² x) + (x – tan x)(1 – sin x) 

= (x + cos x)(- tan² x) + (x – tan x)(1 – sin x) 

= – tan² x (x + cos x) + (x – tan x)(l – sin x)

Ans: Let

By quotient rule,

Ans: Let

By quotient rule,

Ans: 

Let g(x) = 1 + tan x Accordingly, g(x + h) = 1 + tan(x + h)

By first principle,

From (i) and (ii), we obtain

29. (x + sec(x))(x – tan x)

Ans: Let f(x) = (x + sec x)(x – tan x) 

By product rule,

From (i), (ii), and (iii), we obtain 

f’ (x) = (x + sec x)(l – sec² x) + (x – tan x)(1 + sec x tan x)

Ans: 

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top