# SEBA Class 10 Mathematics MCQ Chapter 12 Areas Related to Circles

SEBA Class 10 Mathematics MCQ Chapter 12 Areas Related to Circles Question Answer in English Medium, Class 10 General Maths Multiple Choice Question Answer in English to each chapter is provided in the list so that you can easily browse throughout different chapters SEBA Class 10 Mathematics MCQ Chapter 12 Areas Related to Circles Notes and select need one.

## SEBA Class 10 Mathematics MCQ Chapter 12 Areas Related to Circles

Also, you can read the SCERT book online in these sections Solutions by Expert Teachers as per SCERT (CBSE) Book guidelines. These solutions are part of SCERT All Subject Solutions. Here we have given Assam SEBA Class 10 Mathematics MCQ Chapter 12 Areas Related to Circles Solutions for All Subject, You can practice these here.

### Areas Related to Circles

Chapter – 12

1. The degree measure of the angle at the centre of a circle is . The length of an arc of the sector is-

(a) θ𝝿r /90

(b) θ𝝿r/180

(c) θ𝝿r/270

(d) θ𝝿r/360

Ans: (b) θ𝝿r/180.

2. The area of the circle that can be in- scribed in a square of side 6cm is:

(α) 36𝝿 cm2

(b) 18𝝿 cm2

(c) 12𝝿 cm2

(d) 9𝝿 cm2

Ans: (d)  9𝝿 cm2

3. Area of a sector of angle P (in degrees) of a circle with radius R is-

(a) P/180 х ( 2𝝿R)

(b) P/180 𝝿R3

(c) P/360 х (2𝝿R)

(d) P/720 х (2𝝿 R 2)

Ans: (d) P/720 х (2𝝿 R 2).

4. The area of the circle that can be inscribed in a square of side 8 cm is:

(a) 64𝝿 cm²

(b) 32𝝿 cm²

(c) 16𝝿 cm²

(d) 25𝝿 cm²

Ans: (b) 32𝝿 cm²

5. The degree measure of the angle at the centre of a circle is 1. Then area of the sec- tor is-

(α) 𝝿r2

(b) 𝝿r2/45

(c)  𝝿r2/180

(d) 𝝿r2/360

Ans: (d) 𝝿r2/360.

6. The degree measure of the angle at the centre of a circle is 0. The length of an are of the sector is-

(a) θ𝝿r/90

(b) θ𝝿r/180

(c) θ𝝿r/270

(d) θ𝝿r/360

Ans: (b) θ𝝿r/180

7. The area of the circle that can be inscribed in a square of side 10 cm is:

(a) 100𝝿 cm²

(b) 50𝝿 cm²

(c) 25𝝿 cm²

(d) 36𝝿 cm²

Ans: (b) 50𝝿 cm²

8. The perimeter of a circle having radius 5 cm is equal to:

(a) 31.4 cm

(b) 4.14 cm

(c) 30 cm

(d) 50 cm

Ans: (a) 31.4 cm.

9. If the circumference of a circle is 22cm, then the area of a quadrant of the circle is-

(a) 77/8 cm2

(b) 77cm2

(c) 77/2 cm2

(d) 77/4 cm2

Ans: (a) 77/8 cm2

10. The area of the circle that can be inscribed in a square of side 8 cm is:

(a) 26 π cm2

(b) 18 π cm2

(c) 12 π cm2

(d) 16 π cm2

Ans: (d) 16 π cm2

11. The area of the circle that can be in- scribed in a square of side 6cm is:

(a) 18𝝿 cm²

(b) 36𝝿 cm²

(c) 12𝝿 cm²

(d) 9𝝿 cm²

Ans: (d) 9𝝿 cm²

12. Area of a sector of angle P(in degrees) of a circle with radius R is:

(a) P/180° х 2𝝿 R 2

(b) P/180° х 2𝝿 R 2

(c) P/360° х 2𝝿 R

(d) P/720° х 2𝝿 R 2

Ans: (d)  P/720° х 2𝝿 R 2.

13. If the perimeter and the area of a circle are numerically equal, then the radius of:

(a) 11 units

(b) 4 units

(c) 2 units

(d) 5 units

Ans: (c) 2 units.

14. If the perimeter and the area of a circle are numerically equal, then the radius of the circle is:

(a) 8 units

(b) 5 units

(c) 3 units

(d) 9 units

Ans: (c) 3 units.

15. If the perimeter (circumference) and the area of a circle are numerically equal, then the radius of the circle is:

(a) 10 units

(b) 4 units

(c) 8 units

(d) 6 units

Ans: (b) 4 units.

16. The area of a sector of angle Q (in degrees) of a circle with radius S is:

(a) Q/360° × πS²

(b) Q/180° × πS²

(c) Q/720° × πS²

(d) Q/90° × πS²

Ans: (a) Q/360° × πS²

17. If the circumference of a circle is 44cm, then the area of a quadrant of the circle is:

(a) 154/4 cm²

(b) 154/2 cm²

(c) 154/8 cm²

(d) 154 cm²

Ans: (a) 154/4 cm²

18. The area of a sector of a circle with radius 6 cm if the angle of the sector is 60°.

(a) 152/7

(b) 162/7

(c) 132/7

(d) 142/7

Ans: (c) 132/7.

19. In a circle of radius 21 cm, an arc subtends an angle of 60° at the centre. The length of the arc is;

(a) 22cm

(b) 25cm

(c) 20cm

(d) 21cm

Ans: (a) 22cm.

20. If the area of a circle is 100π cm², then its perimeter (circumference) is:

(a) 20 cm

(b) 30 cm

(c) 40 cm

(d) 50 cm

Ans: (c) 40 cm.

Scroll to Top