SEBA Class 8 Mathematics Chapter 14 বীজগণিতীয় ৰাশিৰ উৎপাদক বিশ্লেষণ

SEBA Class 8 Mathematics Chapter 14 বীজগণিতীয় ৰাশিৰ উৎপাদক বিশ্লেষণ Question Answer, SEBA Class 8 Maths Notes in Assamese Medium, SEBA Class 8 Maths Solutions in Assamese to each chapter is provided in the list so that you can easily browse throughout different chapter Assam Board SEBA Class 8 Mathematics Chapter 14 বীজগণিতীয় ৰাশিৰ উৎপাদক বিশ্লেষণ Notes and select needs one.

SEBA Class 8 Mathematics Chapter 14 বীজগণিতীয় ৰাশিৰ উৎপাদক বিশ্লেষণ

Join Telegram channel

Also, you can read the SCERT book online in these sections Solutions by Expert Teachers as per SCERT (CBSE) Book guidelines. SEBA Class 8 Mathematics Chapter 14 বীজগণিতীয় ৰাশিৰ উৎপাদক বিশ্লেষণ Notes. These solutions are part of SCERT All Subject Solutions. Here we have given SEBA Class 8 Mathematics Chapter 14 বীজগণিতীয় ৰাশিৰ উৎপাদক বিশ্লেষণ Solutions for All Subject, You can practice these here.

বীজগণিতীয় ৰাশিৰ উৎপাদক বিশ্লেষণ

Chapter – 14

অনুশীলনী – 14.1

1. তলৰ ৰাশিবোৰৰ উৎপাদক বিশ্লেষণ কৰা।

(i) 3x²y + 5xy

উত্তৰঃ 3x²y + 5xy

= xy × 3x + xy + 5

= xy (3x + 5)

(ii) 10x²y – 5xy²

উত্তৰঃ 10x²y – 5xy²

WhatsApp Group Join Now
Telegram Group Join Now
Instagram Join Now

= 5xy × 2x – 5xy × y

= 5xy (2x – y) 

(iii) 7a²bc – 21ab²c + 14abc

উত্তৰঃ 7a²bc – 21ab²c + 14abc

= 7abc × a – 7abc × 3b + 7abc × 2 

= 7abc (a – 3b + 2)

2. উৎপাদকত প্ৰকাশ কৰাঃ

(i) a² + ab + 6a + 6b

উত্তৰঃ a² + ab + 6a + 6b 

= a(a + b) + 6(a + b)

= (a + b) (a + 6)

(ii) a² + bc + ab + ac

উত্তৰঃ a² + bc + ab + ac

= a² + ab + bc + ac 

= a(a + b) + c(a + b) 

= (a+b) (a+c)

(iii) 1 + x + x² + x³

উত্তৰঃ 1 + x + x² + x³

= 1 + x + x² (1 + x) 

= (1 + x) + x² (1 + x) 

= (1 + x) (1 + x²)

(iv) ab + a + b + 1

উত্তৰঃ ab + a + b + 1

= a(b + 1) + 1(b + 1)

= (b + 1) (a + 1) 

= (a + 1) (b + 1)

(v) 4ax+3ay-4bx-3by

উত্তৰঃ 4ax + 3ay – 4bx – 3by 

= a(4x + 3y) – b(4x + 3y)

= (a – b) (4x + 3y)

3. উৎপাদকত প্ৰকাশ কৰাঃ

(i) x² – 3y

উত্তৰঃ x² – 36 

= x² – 62 [∵ a² – b² = (a + b) (a – b)]

= (x + 6) (x – 6)

(ii) 9x² + 30x + 25

উত্তৰঃ 9x² + 30x + 25 

= (3x)² + 2(3x).5 + 5²

= (3x + 5)²

= (3x + 5) (3x + 5)

(iii) 16a²- 88a + 121

উত্তৰঃ 16a² – 88a + 121

= (4a)² – 2(4a) × 11 + (11)²

= (4a -11)²

= (4a -11) (4a -11)

(iv) 11x²- 44

উত্তৰঃ 11x² – 44 

= 11(x²- 4)

= 11(x² – 2²)

= 11(x + 2) (x – 2)

(v) x⁴ – 81

উত্তৰঃ x⁴ – 81

= (x²)² – 9²

= (x² + 9) (x² – 9)

= (x² + 9) {x² – (3)²} 

= (x² + 9) (x + 3) (x – 3)

(vi) 4 – x² – y² + 2xy

উত্তৰঃ 4 – x² – y² + 2xy 

= 4 – (x² + y² – 2xy)

= 4 – (x² – 2xy + y²)

= 2² – (x – y)²

= {2 + (x-y)} {2 – (x – y)}

= (2 + x – y) (2 – x + y)

(vii) x⁸ – y⁸ 

উত্তৰঃ x⁸ – y⁸

= (x⁴)² – (y⁴)²

= (x⁴ + y⁴) (x⁴ – y⁴)

= (x⁴ + y⁴) {(x²)² – (y²)²}

= (x⁴ + y⁴) (x² + y²) (x² – y²) 

= (x⁴ + y⁴) (x² + y²) (x + y) (x − y)

= (x − y) (x + y) (x² + y²) (x⁴ + y⁴)

(viii) a³ – ab² – a²b + b³

উত্তৰঃ a³ – ab² – a²b + b³

= a(a² – b²) – b(a² – b²)

= (a – b) (a² – b²)

= (a-b) (a – b) (a+b)

4. উৎপাদকত প্ৰকাশ কৰাঃ

(i) 16 + 8x + x²

উত্তৰঃ 16 + 8x + x²

= x² + 8x + 16

= x² + 2x(4) + (4)²

= (x + 4)²

= (x + 4) (x + 4)

(ii) 15 – 2x – x²

উত্তৰঃ 15 – 2x – x² = -[x² + 2x-15] (mn² + px + q আৰ্হিত সজাই লৈ) 

= -[x² + 5x – 3x – 15] 

= -[x(x + 5) – 3(x + 5)] 

= -[(x + 5) (x – 3)] 

= -(x + 5) (3 – x)

= (x + 5) (x – 3)

(iii) x² + 8x – 20

উত্তৰঃ x² + 8x – 20 

= x² + 10x – 2x – 20

= x(x + 10) – 2(x + 10)

= (x + 10) (x – 2)

(iv) x² + 2x – 3

উত্তৰঃ x² + 2x – 3 

= x² + 3x – x – 3

= x(x + 3) – 1(x + 3) 

= (x + 3)(x – 1)

(v) a² – 4a – 12

উত্তৰঃ a² – 4a – 12 

= a² – 6a + 2a – 12 

= a(a – 6) + 2(a – 6) 

= (a + 2) (a – 6)

(vi) x² – 21x + 104 

উত্তৰঃ x² – 21x + 104

= x² – 8x – 13x + 104

= x(x – 8) – 13(x – 8) 

= (x – 8) (x -13)

(vii) 2x² + 18x + 40  

উত্তৰঃ 2x² + 18x +40

= 2[x² + 9x + 20] 

= 2[x² + 5x + 4x + 20]

= 2[x(x + 5) + 4(x + 5)]

= 2(x+5) (x+4) 

= 2(x+4) (x+5)

(viii) l² -13l + 42

উত্তৰঃ l² – 13l² + 42

= l² – 7l – 6l + 42 

= l(l – 7) – 6 (l – 7) 

= (l – 7) (l – 6)

(ix) -a² – a + 20 

উত্তৰঃ -a² – a + 20

= -[a² + a – 20]

= -[a² + 5a – 4a – 20]

= -[a(a + 5) – 4(a + 5)] 

= -[(a + 5) (a – 4)]

= -(a + 5) (a – 4)

= (4 – a) (a + 5)

5. তলৰ ৰাশিবোৰৰ উৎপাদক বিশ্লেষণ কৰাঃ

(i) 3x² + 8x + 4

উত্তৰঃ 3x² + 8x + 4 

= 3x² + 6x + 2x + 4

= 3x(x + 2) + 2(x + 2)

= (x + 2) (3x + 2)

(ii) 2m² + 7m + 3

উত্তৰঃ 2m² + 7m + 3

= 2m² + 6m + m + 3

= 2m (m + 3) + 1(m + 3)

= (m + 3) (2m + 1)

(iii) 2p²+p-28

উত্তৰঃ 2p² + p – 28 

= 2p² + 8p – 7p – 28

= 2p (p + 4) -7(p + 4)

= (p + 4) (2p – 7)

(iv) 9a² + 21a – 8

উত্তৰঃ 9a² + 21a – 8

= a² + 24a – 3a – 8 

= 3a (3a + 8) -1(3a + 8)

= (3a + 8) (3a – 1)

(v) 4y² + 25y – 21

উত্তৰঃ 4y² + 25y – 21

= 4y² + 28y – 3y – 21 

= 4y (y + 7) -3 (y + 7)

= (4y – 3) (y + 7)

(vi) 3m⁶ – 6m⁴n – 45m²n²

উত্তৰঃ 3m⁶ – 6m⁴n – 45m²n²

= 3m²[m⁴ – 2m²n – 15n2]

= 3m²[(m²)² -5m²n + 3m²n – 15n²] 

= 3m² [m² (m² – 5n) + 3n (m² – 5n)]

= 3m² (m² – 5n) (m² + 2n)

(vii) 1 – x – 6x²

উত্তৰঃ 1 – x – 6x²

= -[6x² + x – 1] 

= -[6x² + 3x – 2x – 1]

= -[3x(2x + 1) – 1(2x + 1)] 

= -[(3x – 1) (2x + 1)]

= -(3x – 1) (2x + 1)

= (1 – 3x) (2x + 1)

(viii) 6x² + 7xb – 3b²

উত্তৰঃ 6x² + 7xb – 3b²

= 6a² + 9ab – 2ab – 3b²

= 3a (2a + 3b) – b (2a + 3b) 

= (2a + 3b) (3a – b)

6. খালী ঠাই পূৰোৱা (নিৰীক্ষণ কৰি)

(i) 9x² + 15x + 4 = (3x +………) (………+ 1) 

উত্তৰঃ 

[9x² + 15 + 4 = 9x² + 12x + 3x + 4

= 3x (3x + 4) + 1 ( 3x + 4 )

= (3x + 4) (3x + 1)]

(ii) 12y² – 17y + 6 = (………- 2) (4y -………)

উত্তৰঃ 

[12y² – 17y + 6 = 12y² – 9y – 8y + 6

= 3y(4y – 3) – 2(4y – 3)

= (3y – 2) (4y – 3)]

(iii) 6m² – m – 15 = (3m………) (2m………)

উত্তৰঃ 

[6m² – m – 15 = 6m² – 10m + 9m – 15

= 2m (3m – 5) + 3(3m – 5) 

= (3m – 5) (2m + 3)]

অনুশীলনী 14.2

1. তলৰ হৰণবোৰ কৰাঃ

(i) x⁵ ÷ x²

উত্তৰঃ x⁵ ÷ x² = x⁵/x² [aᵐ ÷ aⁿ = aᵐ⁻ⁿ, বিধি ব্যৱহাৰ কৰি] 

= x⁵⁻²

= x³

(ii) 6p³ ÷ 3p

উত্তৰঃ 6p³ ÷ 3p

= 6p³/3p

= 2 × 3p³/3p

= (2p³)/p

= 2p3 – 1 

= 2p²

(iii) 36m³n² ÷ (-4mn³)

উত্তৰঃ 36m³n² ÷ (-4mn³)

= 36m³n²/-4mn³

= 4 × 9m³n²/-4mn³

= 9m³n² /-mn³

= – 9m³⁻¹ .n²⁻³

= – 9m².(n⁻¹)

= – 9m² × 1/n

= – (- 9m² )/n

(iv) 96p²q²r⁴ ÷ 72pqr

উত্তৰঃ 96p²q²r⁴ ÷ 72pqr

(v) -12a⁸b⁷ ÷ 17a⁴b⁹

উত্তৰঃ -12a⁸b⁷ ÷ 17a⁴b⁹

2. তলৰ বহুপদ ৰাশিবোৰক একপদ ৰাশিৰে হৰণ কৰাঃ

(i) (5y³ – 3y²) ÷ y²

উত্তৰঃ (5y³ – 3y²) ÷ y² (5y – 3)

∴ (5y³ – 3y²) ÷ y² = (5y³ – 3y²)/y²

= y² (5y – 3)/y²

= 5y – 3

(ii) (5a⁸ – 4a⁶ + 3a⁴) ÷ 2a⁴

উত্তৰঃ (5a⁸ – 4a⁶ + 3a⁴) ÷ 2a⁴

5a⁸ – 4a⁶ + 3a⁴ = a4 (5a4 – 4a2 + 3)

∴ (5a⁸ – 4a⁶ + 3a⁴) ÷ 2a⁴

(iii) (5p²q³r⁴ – 10p²q²r² + 15p³q³r⁴) ÷ 5p²q²r²

উত্তৰঃ (5p²q³r⁴ – 10p²q²r² + 15p³q³r⁴) ÷ 5p²q²r²

(iv) (ax³ + bx²- cx) ÷  ax

উত্তৰঃ (ax³ + bx²- cx) ÷  ax

(v) (m³n⁶ – m⁶n³) ÷ m³n³

উত্তৰঃ (m³n⁶ – m⁶n³) ÷ m³n³

3. তলৰ হৰণবোৰ কৰাঃ

(i) (9x – 21) ÷ (3x – 7)

উত্তৰঃ (9x – 21) ÷ (3x – 7)  

= 9x – 21/3x – 7

= 3(3x – 7) )/(3x – 7)

= 3

(ii) 10m(8m + 12) ÷ (4m + 6)

উত্তৰঃ 10m(8m + 12) ÷ (4m + 6)

(iii) 7p²q² (22p-6) ÷ pq(121p – 33)

উত্তৰঃ 7p²q² (22p-6) ÷ pq(121p – 33)

(iv) 1729xyz (3x + 12) (4y – 24) ÷ 19(x + 4)(y – 6)

উত্তৰঃ 1729xyz (3x + 12) (4y – 24) ÷ 19(x + 4)(y – 6)

4. হৰণফল নিৰ্ণয় কৰাঃ

(i) (x² – 25) ÷ (x + 5)

উত্তৰঃ (x² – 25) ÷ (x + 5)

= x² – 25/x + 5

= x² – 5²/x + 5

= (x + 5)(x – 5)/(x + 5)

= (x – 5)

(ii) (4a² + 8a + 4) ÷ (a + 1)²

উত্তৰঃ (4a² + 8a + 4) ÷ (a + 1)2

(iii) (9p² – 18p + 9) ÷ (p -1)

উত্তৰঃ (9p² – 18p + 9) ÷ (p -1)

(iv) 26pqr (p + q) (q + r) (r + p) ÷ 52pq (q + r) (r + p)

উত্তৰঃ 26pqr (p + q) (q + r) (r + p) ÷ 52pq(q + r)(r + p)

= 26pqr (p + q) (q + r) (r + p)/52pq (q + r)(r + p)

= 26pqr (p + q)/52pq

= 26r (p + q)/(2 × 26)

= r (p+q)/2

(v) (x⁴ – 81) ÷ (3 – x) 

উত্তৰঃ (x⁴ – 81) ÷ (3 – x)

= (x⁴ – 81)/(3 – x)

= (x²)² – 9²/3 – x

= (x² + 9) (x² – 9)/3 – x

= (x² + 9) (x² – 3²)/3 – x

= (x² + 9)(x + 3)(x – 3)/(3 – x)

= (-x² + 9)(x + 3)(3 – x)/(3 – x)

= -(x² + 9) (x + 3)

(vi) (x² + 10x + 21) ÷ (x + 3)

উত্তৰঃ (x² + 10x + 21) ÷ (x + 3)

= x² + 10x + 21/(x+3)

= x² + 7x + 3x + 21/x + 3

= x(x + 7) + 3(x + 7)/x + 3

= (x + 7)(x + 3)/x + 3

= x + 7

(vii) (m² + 6m – 27) ÷ (m – 3) 

উত্তৰঃ (m² + 6m – 27) ÷ (m – 3)

(viii) (4y² + 25y – 21) ÷ (y + 7) 

উত্তৰঃ (4y² + 25y – 21) ÷ (y + 7)

(ix) (4u² + 25u + 21) ÷ (u +1)

উত্তৰঃ (4u² + 25u + 21) ÷ (u +1)

(x) 52y³ (50y² – 98) ÷ 26y²(5y+7) 

উত্তৰঃ 52y³ (50y² – 98) ÷ 26y²(5y + 7)

= 52y³ (50y² – 98)/26y²(5y + 7)

= 52y³ × 2 (25y² – 49)/26y²(5y + 7)

5. তলৰ গাণিতিক উক্তিবোৰৰ পৰা ভূলটো বাছি উলিওৱা আৰু ভুল বিলাক শুদ্ধ কৰা। 

(i) 9x²/9x² = 0

উত্তৰঃ 

(ii) 4x² + 1/4x² = 1 + 1 = 2

উত্তৰঃ

(iii) (3x+2)/3x=1/2

উত্তৰঃ 3x + 2/3x = 3x/3x + 2/3x

= 1 + 2/3x

∴ 3x + 2/3x = 1 + 2/3x

(iv) (7x + 5)/5 = 7x

উত্তৰঃ 7x + 5/5 = 7x/5 + 5/5

= 7x/5 + 1

∴ 7x + 5)/5 = 7x/5 + 1

(v) 4x² + 8x + 4/4 = x² + 8x + 4 

উত্তৰঃ 4x² + 8x + 4/4 = 4(x² + 2x + 1)/4

= x² + 2x + 1

∴ 4x² + 8x + 4/4 = x² + 2x + 1

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top